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Introduction 

The prediction of turbulent boundary layers involving heat 
transfer has many applications in engineering practice. The art 
of predicting the hydrodynamic and thermal behavior of 
turbulent boundary layers has advanced very rapidly with the 
advent of large-scale digital computers and the development of 
sophisticated finite-difference procedures (explicit and implicit) 
for the solution of boundary layer equations) 

The general objective of this investigation was to implement 
a hybrid computational procedure of explicit type for the rapid 
solution of the turbulent boundary layer equations. A procedure 
involving the method of lines 2 has been utilized and appropri- 
ately modified for the treatment of the conservation equations 
of mass, momentum, and energy. A variant of this procedure 
is introduced wherein the discretization process of the partici- 
pating transversal derivatives in the conservation equations was 
carried out via control volumes, a Accordingly, the control 
volumes have to be constructed in such a way that their sizes 
have infinitesimal length and finite height. Then the conservation 
equations are rewritten as a system of first-order ordinary 
differential equations, where the streamwise coordinate is the 
independent variable with a continuous behavior. In turn, 
the resulting initial-value problem may be readily integrated 
numerically with a standard Runge-Kutta algorithm on a 
personal computer. In passing, it should be mentioned that the 
calculation procedure presented in Ref. 4 resembles the one 
presented here. However, their discretization is more involved, 
necessitating the approximation of both differential and integral 
terms in the conservation equations. 

Ultimately, the experimental data most heavily relied upon 
for comparison purposes were expressed in terms of global 
quantities, such as the local skin friction coefficient and the 
Stanton number for an air flow along a flat plate covering a 
range of Reynolds numbers from 105 to 107 . 

turbulent boundary layer along a flat plate may be written in 
a general form as follows: 

t~ 63 (vq~) = L (Feff t3q~'~ + S4~ (1) 
~x (u~ ) + ~y 8y \ ay / 

The isothermal fiat plate maintained at t ,  is aligned parallel 
to an air stream having uniform velocity u~ and uniform 
temperature t o. 

The simplest model available for the turbulent momentum 
exchange process, i.e., Prandtl's mixing length concept, has 
been adopted in this paper: 

gM = 12 ~ (2) 
cy 

In order to account for the viscous sublayer of the inner region 
in the boundary layer, a modified expression for the mixing 
length s has been used here; i.e., 

I i = 0.4y[ 1 --exp( --y÷/A + )] (3a) 

where A + = 25. Alternatively, the outer region of the boundary 
layer has been modeled by a constant mixing length 6 given by 

l o =0.0866 (3b) 

Additionally, the turbulent Prandtl number has been taken as 
0.9. 

C o m p u t a t i o n a l  m e t h o d o l o g y  

It is important to recognize that, although turbulence models 
may be carefully formulated, sometimes predictions cannot be 
improved beyond a certain point because of the inherent 
limitations of the numerical methodology employed. Conse- 
quently, the merits of a higher-order closure turbulence model 
can be easily lost in the discretization process. 

Governing equations 

Under the assumption of constant properties, the time-average 
conservation equations of mass, momentum, and energy for a 
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The new proposed method MOLCV 

Briefly, the method of lines is essentially a hybrid technique for 
replacing a partial differential equation by a system of ordinary 
differential equations in one of the independent variables. 2 If 
the equation is parabolic--having independent variables x 
(axial variable) and y (transversal variable), as in Equation 1 -  
the partial derivatives with respect to y may be replaced by 
finite-difference expressions. Consequently, this systematic pro- 
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cedure automatically gives rise to a system of first-order 
ordinary differential equations, where the independent variable 
is x. 

Alternatively, the discretization procedure of the conservation 
equations (Equation 1) may be carried out more efficiently 
using the control volume approach. 3 This combination gives 
rise to the method of lines and control volumes (MOLCV) 
wherein the control volume has infinitesimal length in the axial 
direction and finite height in the transversal direction. Corre- 
spondingly, the general transport equation (Equation 1) inte- 
grated between the appropriate limits of s and n, leads to 

f n~x(Udp)dy+(vdP),-(vdP)s 

=(r°"~y).-( r°"a#,~+r"x*ayay,, j, (4) 

rearranging terms yields the ordinary differential equation 

d 1 - (v4~) +S,p (5) ~ (up~)=~ ro. 
s 

Thus, from a strict mathematical point of view, Equation 5 
governs the continuous variation of each transported quantity 
in the x-direction at any fixed distance y = yp from the plate. 

In addition, the diffusive term appearing at the upper and 
lower faces of the control volume are described by an appropriate 
logarithmic law for the variation of each transported quantity 
between neighboring lines. 

Transformation of the basic equations 

Equation 5, rewritten for each of the conservation equations, 
results in the following set of ordinary first-order differential 
equations. 

Momentum: dup 1 -vs (us -u . )  
dx Ay(2up-u,)  (v+eM) gyJ s J 

(6) 

Mass: v. = vs - A y duv d-~ (7) 

Energy: dt ,_ I r (  l + I e.% St_v t l "  tedu , 
dx u v Ay L\Pr  Pr t v , /ay ] ,  u e dx 

(8) 

A. Campo 

Examination of Equations 6-8 reveals that the transversal 
velocity v and the axial velocity gradient dup/dx may be 
explicitly calculated. 

In addition, the velocity field in the vicinity of the wall has 
been examined, assuming the existence of a Couette flow. 
According to Ref. 7, this provides the near-wall boundary 
conditions for the turbulent velocity field based on experimental 
observations. 

Thus, the partially discretized momentum and energy trans- 
port equations constitute a coupled system of first-order ordinary 
differential equations. Correspondingly, these equations can be 
numerically integrated explicitly with a Runge-Kutta fourth- 
order algorithm on a personal computer. 

Finally, the necessary number of lines inside the boundary 
layer may be determined for each axial step by adding new 
lines to a preselected number of lines at the leading edge, such 
that the condition at the outer edge u/uo~>0.99 is always 
satisfied. Thus the increasing number of lines serve to delineate 
step-by-step the natural growth of the turbulent boundary 
layers. 

Calculated and experimental results 

The numerical solutions using MOLCV were performed for 
105< Rex < 107 and Pr = 0.7. Undoubtedly, the most demanding 
test of the marching procedure (Runge-Kutta algorithm) occurs 
in the neighborhood of the trailing edge of the plate. 

We now turn to the experimentally and numerically deter- 
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Local skin-friction coefficient 

Notation 

A + Van Driest constant 
Cf Local skin-friction coefficient 
l Mixing length 
Pr Prandtl number 
Prt Turbulent Prandtl number 
Re~ Local Reynolds number 
Re 0 Momentum thickness Reynolds number 
S~ Source term (Equation 1) 
t Temperature 
t ,  Wall temperature 
to Free stream temperature 
u Axial velocity component 
u~ Free stream velocity 
v Transversal velocity component 
x Axial coordinate 
y Transversal coordinate 

y÷ Nondimensional transversal coordinate 

Greek 
F © f f  
Ay 
6 

£M 
V 

P 

letters 
Effective diffusion coefficient (Equation 1) 
Transversal interval 
Thickness of the momentum boundary layer 
Eddy diffusivity for momentum 
Kinematic viscosity 
Density 
Generalized variable (Equation 1) 

Subscripts 
i Inner 
n North face 
o Outer 
P Line 
s South face 
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mined values of global quantities, which are brought together 
in Figures 1 and 2. Figure 1 compares the experimental and 
numerical results for the variation of skin friction coefficient, 
Cf, with the momentum thickness Reynolds number, Re 0. The 
vast number of data points for air collected and presented in 
Ref. 8 is reproduced here. An overall inspection of Figure 1 
reveals that excellent agreement prevails between both sets of 
results. Additionally, in Figure 2, heat transfer results for air 
in terms of the Stanton number, St, are plotted as a function 
of the local Reynolds number, Rex. Figure 2 confirms the 

expected monotonic decrease of the turbulent heat transfer 
coefficient along the plate. Note that there is no appreciable 
deviation between the numerical hybrid solution and the 
experiments reported in Ref. 9. 
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